

WRF Nesting

Wei Wang and David Gill University of Sao Paulo, Brazil October 18, 2012

What is a nest simulation?

• A nest is a *finer-resolution* model run. It may be *embedded simultaneously* within a coarser-resolution (parent) model run, or *run independently* as a separate model forecast.

 The nest covers a portion of the parent domain, and is driven along its lateral boundaries by the parent domain.

Why nesting?

- Large area of high resolution model run is too expensive: Finer details in terrain, landuse, land/ water contrast, etc.
- Lateral boundary conditions from other sources are not adequate in time (*less* frequent) and space (may be lack of vertical resolution), and may not be consistent with WRF model
- No boundary conditions for microphysical variables and vertical motion
- Consider using the parent domain as a provider of LBCs for the nest

Why not nesting?

- However, there are advantages NOT to use a nested run:
 - Global model resolution is getting higher
 - Nest uses more memory
 - Need nest input (esp. for chem)
 - Have lateral boundaries on multiple domains
 - Solutions may not be smooth across nest domain boundaries

Nesting Illustration

Real-Data Lateral Boundary Condition: Location of Specified and Relaxation Zones

South

Nest Terrain Lateral Smoothing

wrfinput_d02

wrfout_d02_*

Terrain: same as parent

Terrain: blend with nest values

Lateral Boundary Effect (example)

Ways to do nesting

- Two-way nesting:
 - Common: run nest and parent domains in a single run, with two-way nesting
 - Same as above but no feedback one-way
- One-way nesting via ndown program

Start by running *geogrid* for nested domains

Nesting (Two-Way)

- Lateral boundary condition is provided by parent domain at every parent step
- Method is same as for outer domain (specified and relaxation zones)
- Additional fields include vertical motion and microphysics species
- Feedback: Interior of nest (1 row/ column in) overwrites overlapped parent area:

– namelist option: feedback = 1

Nesting (Two-Way)

Sequence

- Parent domain runs a time-step to t+dt
- Nest boundaries from beginning and end of time-step interpolated
- Nest runs typically three steps (dt/3) using time-interpolated parent info at nest boundaries
- After nest reaches t+dt, feedback overwrites parent in overlapped region
- Repeat

One-Way Nesting

- As two-way nesting but no feedback:
 - namelist option: feedback = 0
 - nest BC updated frequently good
 - Solution in parent and nest may drift apart
 - bad

One-Way Nesting

- Achieved with NDOWN program to take a previous WRF run output and provide nest boundary conditions at parent output frequency
 - Uses parent WRF run instead of analysis for initial and lateral boundary conditions
 - Like the parent domain, no vertical motion and microphysical variables in LBC
 - Take advantages of running your own model: output parent domain frequently for LBCs
 - May add more vertical levels

Nesting: OK

Nesting: Not OK

Placement of a nest

How to Setup Nested Runs?

- Run geogrid.exe for all domains
 - geo_em.d01.nc, geo_em.d02.nc, ...
- Run metgrid.exe for all domains with first time period for nested domains:
 - met_em.d01.<date>, multiple time periods
 - met_em.d02.<date>, first time period only
- Run real.exe as if going to run two-way nest:
 - wrfinput_d01, wrfinput_d02
 - Rename wrfinput d02 to wrfndi d02 for ndown

ARW Coarse Grid Staggering 3:1 Ratio

Notes on Nesting

- Use the same physics in all nests
 - An exception is convection parameterization,
 which may be turned off in a finer nest (< 5 km)
- For real-data, use odd nest ratio: 3 or 5
- Nest can use different model time-step ratio than grid-size ratio (to save computing time, for example):
 - Grid-size ratio is 3. e.g. 30/10 km
 - Nest time-step ratio can be 3, but it can also be 2 or 4

Notes on Nesting

- No need to save on coarse domain:
 - If both domains have the same grid numbers, the coarse domain is only a ¼ of the total cost
- Don't use small nest (nest LBC effect)
- Place your nest away from parent domain boundary (parent domain LBC effect)
- Configure the nest with its parent domain run *geogrid* as if you were to run a two-way nested run, even if you plan to run program *ndown.exe* ensure your nest placement is correct

Resources

- User Web pages:
 - http://www.mmm.ucar.edu/wrf/users/
 - Online tutorial
 - Tutorial lecture slides
 - User's Guide, Chapter 5

RF*USERS* PAGE Model System **User Support** Download Doc / Pub Links Users Forum WRF For **General Information** Search wrfhelp model.org WRF M(wrf-news WRF FORECAST wrf-users ic Domain page for the Weather Welcome a Registered User Notice Resea Workshop modeling system. The ntact WRF WRF Tutorial domain and is freely Support available for community use. It is designed to be a flexible, state-of-the-art atmospheric simulation system that is portable and efficient on available parallel computing platforms. WRF is suitable for use in a broad range of applications across scales ranging from meters to thousands of kilometers, including: THE RESERVE AND THE PARTY OF TH WRF Real-time forecast (old sit - Idealized simulations (e.g. LES, convection, baroclinic ANNOUNCEMENTS - Regional and global applications The next New Users' Tutorial will - Parameterization research held Jan 28 through Feb 5, 2013 - Data assimilation research announcement will be made whe - Forecast research

